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Linear Algebra Applied to Physics

Determining Small Vibrations in Conservative Elastic Systems

0

Linear Algebra Prerequisites: Being able use eigenvalues and

eigenvector to diagonalize a symmetric matrix.

Prerequisite Knowledge in Physics: None.

Other Prerequisite Knowledge: A background in solving basic

differential equations would be helpful. However, Appendix A

contains this basic information. 0
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Section 1 Introduction

In this study we will look at small vibrations. In particular,

the small vibrations which we will study are in a system with an

equilibrium configuration which is a position where the system

remains at rest. An example of a system in its equilibrium

configuration is the simple pendulum as seen in Figure 1.1. The

simple pendulum consists of a ball attached to a taut wire, anchored

above, which can swing in the vertical plane. The weight of the

wire is negligible cbmpared to the weight of the ball.

Figure 1.1

We say that a system has a stable equilibrium configuration if

after a small displacement, the system tends to return to its

equilibrium configuration. There are different types of equilibrium

depending on the nature of the system. We are interested in the

type of equilibrium found in an elastic system. This is a system

which has the following two characteristics: I ) the system has a

stable equilibrium configuration and 2) a small displacement from

* equilibrium creates forces which tend to restore the system to its
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stable equilibrium configuration. A displacement from equilibrium

is called strain and the force which restores the system to

equilibrium is called stress. Thus, stress is a function of strain.

The simple pendulum in Figure 1.1 is also an example of an elastic

system in its stable equilibrium configuration.

The total energy in an elastic system is composed of two types

of energy, kinetic and potential. We will begin by considering the

intuitive definitions of these terms and then discuss their formulas.

Kinetic energy is the energy a body possesses because it is in

motion. Before we can write the formula for kinetic energy, we

must be able to describe the system mathematically. In any system

there is a minimum number of coordinates that are required to fully

describe the configuration of the system. In general, the number of

coordinates is equal to the number of "particles" in the system times

the dimension of the system. In the case of the simple pendulum,

the ball is the only particle in the system. The dimension of the

system is one, because the position of the ball can be described

using the angle made by the pendulum compared to the position of

the pendulum in its equilibrium configuration, as seen in Figure I.I.

Therefore, the number of coordinates needed to describe the simple

pendulum is one. The velocity of the system can also be written in

terms of the coordinates which describe the configuration of the

system. To be able to do this, we must specialize our notation. If n

coordinates (x1, x 2 . .... xn) are required to describe the system, then

each xi represents a Cartesian coordinate of one of the particles in 0
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the system. For example, if we have two particles moving in the xy-

plane, which has dimension two, we will need four coordinates to

describe the system. The four coordinates (xI, x 2 , x3 , x4 ) represent

the Cartesian coordinates of the particles in the system; that is, xi

and x 2 represent x- and y-coordinates of the first particle, and x3

and x4 represent the x- and y-coordinates of the second particle.

From this we see that the velocity of the system can be expressed in

terms of the velocity of each coordinate. The velocity vector for a

system with n coordinates can be written in terms of its velocity

components

dx I dx 2 dxnj
dt ' 7 F ... dt .

The kinetic energy of the system is equal to the sum of one half the

square of each velocity component times the mass of the particle

which the coordinate describes. If we let T represent kinetic,

energy and mi the mass of the particle which is described using the

Cartesian coordinate xi, then our formula becomes

l n (dxi
T=-.. mi - -

2 I=
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To have a conservative system, there must exist a function

whose partial derivative with respect to any coordinate, say xi, is

equal to the negative value of the force in the direction represented

by that coordinate. This function is called the potential energy

function. We can describe the relationship between this function

and the forces in the system by the equation

ix (potential energy function) =- (force in the x. direction)

From now on, we will assume that we are always in a conservative

system. In addition, if the potential energy function is not time

dependent ( -!(potential energy function)= 0), then in our 0
conservative elastic system the total energy of the system is

constant and is the sum of the kinetic and potential energies. Also,

when the strain of the system is zero (the system is in its

equilibrium configuration, so xi=O for all i), then the partial

derivative of the potential energy function with respect to any-

variable must equal zero. This statement can be interpreted in the

following two ways: i) in the equilibrium configuration the potential

energy function is at a minimum and 2) the restoring forces are

equal in magnitude and of opposite sign to the forces that created

the displacemiient. This statement also tells us that the potential

energy function can not contain linear terms which have nonzero

constant coefficients in any of the xi. To see why this is true, let us
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assume the potential energy function contains a nonzero linear term

cxi (c is a nonzero constant). Then take the. partial derivative of it

with respect to xi. Setting xi equal to zero, we find the nonzero

constant c is equal to zero, which is a contradiction. Therefore, we

conclude that c must be zero and the potential energy function does

not contain a nonzero linear term cxi. Also, it does not matter if the

potential energy function has a constant term or not, because when

we differentiate the function with respect to any x1 (i=l, 2,.... n), the

constant becomes zero. Thus, if we write the potential energy

function in its Taylor series expansion, the non-constant part starts

with quadratic and terms of higher powers (which may also contain

a constant term). When we differentiate the potential energy

function with respect to xi (for i= I, 2,...n), we obtain a linear

combination of the variables x 1, x2 . .. xn plus higher order or

mixed terms (for example x lxn orxix 2 xn). If we ignore the higher

order terms, then the linear part which remains gives us the specific

relationship of stress to strain, which is known as Hooke's Law. In

general, Hooke's Law states that "stress is a linear transformation

operating on strain." Intuitively, we would say, restoring forces are

linearly proportional to the displacement of the mass from

equilibrium, If the non-constant potential energy function starts

with a power greater than two, it is possible to use an approximation



to find the relationship between stress and strain in which the still

higher power terms in the partial derivative of the potential energy

function have been ignored. However, this is no longer a linear

function.

We will consider two approaches to the formulation of a

differential equation whi:h models a system. The first approach is

developed using Newton's second and third laws of motion, which

are stated below for convenience.

Second Law - The mass of the body times the acceleration of

the body is equal to the force acting on the

body.

Third Law For every action there is an opposite and equal

reaction.

From these laws we derive the differential equation which models a

conservative elastic system

mass x d = restoring forcedt2

or

d 2(strain)
(!.1) .mass x 2 stress.

dt 2



In the second approach, instead of using the direct application

of Newton's laws, we will consider a method developed by Joseph

Lagrange, a French mathematician. This very elegant and

sophisticated method can be applied to systems which are more

general than the ones we are considering here. Since our system is

conservative and elastic, the energy is constant and equal to the sum

of the kinetic and potential energies. If we let V represent potential

energy and E represent the total energy in an n coordinate system,

then we have

In (dx.' )
E=T+V=•-m. mI --', +V

To make it easier to express this differential equation, we will

introduce a type of notation you may not have used before. The
dx

derivative i will be written as *, where the single dot above the

variable x indicates that one derivative of x, with respect to time,

has been taken. This idea can be extended so that R indicates that

two derivatives of x with respect to time have been taken. This

notation is used to rewrite the equation for total energy.

(12 n .2

(1.2) ==T+V= M- .m . +V

We wish to derive the equations of motion which can be used to

model conservative elastic systems. Our first step is to find the
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partial derivative of Equation (1.2) with respect to each of the

coordinates. Since the procedure is the same when taking the

partial derivative with respect to each coordinate, we will only find

the partial derivative of the function for total energy (a constant)

with respect to the xi th coordinate. We obtain

0 T + V
0= ax

! I

or

(1.3) -aV c) T
ax. ax.I I 0

Since the mass of each particle is known, the partial derivative of

the kinetic energy with respect to the coordinate xi is

aT _ 2 a"mi ax. aX. - - =
axrmi[ x ±~ i at=ax at'mx

Substituting this into Equation (1.3), we obtain the restoring force of

the xi coordinate.

( 1.4 ) ,aV =Miax.

I0



Since the kinetic energy is expressed in terms of *., we can find

aT

1R r iI .J MII

We now differentiate this equation with respect to time to obtain

di.

d r -T-- = d M.
dt a i dt ii

We see that the right side of this equation is the same as the right

side of Equation (1.4). Equating the two, we obtain the equation of

motion for the xi th coordinate.

d [ DT ]=-
dtaR. ax.

Therefore, the equations of motion which model our conservative

elastic system with n coordinates are

(15 d [ aT =-a d r aT av d aT _ aX'
dt I a1 axI dt Ia 2 ax2 dt x xn

We will model the simple pendulum of Figure 1.1 using both

the method which applies Newton's laws directly and the equations
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of motion formulated by Lagrange. Since we are only interested in

small vibrations of a system, let us discuss the conditions under

which the vibrations in the pendulum system remain small. In a

conservative elastic system the total energy of the system is

constant and is the sum of the kinetic and potential energies. The

potential energy of the pendulum system is determined by the

displacement of the ball from its equilibrium position. Imagine the

pendulum in Figure 1.1 being placed very close to its equilibrium

position and released as in Figure 1.2.

L
Equilibrium L

position

6 m

Figure 1.2

Since the potential energy is small to start with (the displacement

from equilibrium is small) and we are in a conservative system, we

know that it will remain small. Because the displacement stays

small, the angle 0 will always be small. Thus, the vibrations of this

system can only be small vibrations.

Let us model the simple pendulum system using the method

which applies Newton's laws directly. To keep this example simple

we will only consider the positive region which is to the right of the

equilibrium configuration in Figure 1.3(a). Let L represent the
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length of the pendulum, m be the mass of the ball at the end of the

pendulum, 0 the angle the pendulum makes with respect to the

equilibrium configuration, and s represent the length of the arc the

ball travels. The force pulling the ball down is the mass of the ball

times the acceleration due to gravity g.

Equilibrium8 L Equilibrium, L L
position position

Im Im mgsine m

Restoring

force B

mg mg mg

(a) (b) (c)

Figure 1.3

We will apply Newton's laws of motion to model the pendulum

system by using Equation (I. I ). Thus, we need to determine the

stress and the strain of the system. Since stress or restoring force is

the force trying to return the ball to its equilibrium configuration,

we must resolve the force on the ball (mg) into its component forces.

Figure 1.3(b) shows the restoring force is the component of force on

the ball along the arc length. Since sin0= oppositehypotenuse'th

magnitude of the restoring force is mg sin0 as seen in Figure 1.3(c).

* We will need a minus sign to indicate that the restoring force is
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opposite in direction to the force which originally moved the ball

from its equilibrium configuration. Thus, the restoring force or

stress is equal to - mg sinO. The strain is the displacement of the

ball from the equilibrium position. This distance is the arc length s,

which can also be described using the equation s=LO. Substituting

these values for stress and strain into equatiron (1.1) gives

m d 2 [L =- mg sinO

Taking the second derivative of LO with respect to time, this

equation becomes

m LO=- mg sinO

Simplifying and moving all terms to the left side of the equation, we

get the second order differential equation that models our

conservative elastic system.

+g sine=O.

We now model the simple pendulum system using the

equations of motion formulated by Lagrange. Since 0 is the only

coordinate needed to describe the system, we will only need to use

one of the equations of motion found in Equation (1.5).
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SdTTI=_ aVv

t a6 ae

Thus, we need to find both the kinetic energy and potential energy

of the system. The kinetic energy is one half the mass of the ball

times the square of the velocity. The velocity is the first derivative

of the distance with respect to time.
d [isanc]=d [1O d0:L

velocity = -- [ distance=- [LO = L -•-dtdt Li dt

Therefore, the equation describing the kinetic energy becomes

mL 2 1 L2

Since potential energy is the energy needed to restore the system to

equilibrium, it is equal to weight of the ball (mass of the ball times

the acceleration due to gravity g) times the height of the ball-above

the reference point. Since the ball is below the reference point, V is

adjacentnegative. Using the fact that cos0 = en we determine the

hypotenuse .w eemn h

distance of the ball below the reference point to be Lcos0 as seen in

Figure 1.4.
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reference point're

Lco 8 
L

Figure 1.4

Thus, the potential energy is

V = -mgL cosO.

Now, we substitute the appropriate partial derivatives of the kinetic

and potential energy equations into the equation of motion. First,

we find the left side of the equation of motion by differentiating the

kinetic energy equation with respect to 0.

aT I mL 2( 2 6)m L2a60- 2 m (0=

Then differentiating with respect to time, we obtain

d r aT 1 2-
dt- L -ao- J= mL 0

Second, the right side of the equation of motion is

-• -[-m gL a( =[e)] m g L (-sinO) ] =-mg Lsin0



S 17

Equating the two sides, the equation of motion becomes

2 -
m 0 =- m g LsinO

Simplifying and moving all terms to the left side of the equation, we

obtain the second order differential equation that models our

conservative elastic system. As expected, this is the same equation

which we found by applying Newton's laws.

(1.6) 6+gsinO=O
L

Let us pause for a moment and discuss the relationship

between the potential energy function and the component of force

tangent to the path the ball travels (that is, in the direction of arc

length). Recall that in a conservative system, the partial derivative

of the potential energy function with respect to any direction, gives

the negative of the force in that direction. That is, -F where
as s

Fs is the force in the direction of the arc length s. First, we need to

write the potential energy function in terms of arc length s. We will

use the fact that s=LO.

V=-mgL cos(-L)

SWe continue by differentiating this with respect to s to obtain
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a-=-mgL- ±sin( &)]=mgsinO

Thus, F -- mg sine is the restoring force, since the simple

pendulum is described using only one coordinate. (Recall the

discussion following Figure 1.3.)

So far we have found the second order differential equation

which models the simple pendulum system using two different

methods. Now, we are ready to consider how Equation (1.6) can be

solved. Since this equation involves sin O, we know it is a nonlinear

differential equation. (See Appendix A for definition.) One

technique used to find the exact solution (if that is possible) of a

second order nonlinear differential equation is to first reduce it to a

first order differential equation. Recall that, the equation of motion

was derived from Equation (1.7). Since Equation (1.6) was found by

using the equation of motion, we can use Equation (1.7) as our first

order differential equation.

(1.7) E=T+V=-.mL' 2 (2 - mg LcosO

2 ý-d2

We begin by solving for the squared derivative (dO'2 in Equation
(dt

(1.7).
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(de]2 2(E+mgLcose)
-L 

2(1.8) kdt / mL2

Let us pause for a moment to assure ourselves that we could

legitimately use Equation (1.7) as our first order differential

equation. We will differentiate Equation (1.8) with respect to time

and see that we get Equation (1.6).

2 =_2 m-•0 +mgL(- esin9)]

When simplified, we'see this is Equation (1.6).

g+-c sin=- 0

Taking the square root of both sides of Equation (1.8) and recalling

that we are only considering the positive region to the right of the

equilibrium configuration, we obtain

dO _2(E+mgkcose)

dt mL

One way to solve the differential equation above for t, is to isolate dt

on one side of the equation and dO on the other. This technique is

sometimes called separation of variables.I
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mL

dt= 2(E+mgLcose) dO

Integrating both sides of the above equation, we obtain

tmL 2  dOf F2(E+ mgLcose) d)

This is an elliptic integral which can not be expressed in terms of

elementary functions. Thus, to get any information about the

solution to Equation (1.6), we must resort to numerical

approximations or use the fact that we are dealing with a system

involving small vibrations. We also note that the question of finding

the inverse function 8=0(t) of the function above is, at best, a

numerical approximation problem and is not even useful in

predicting values of 0 at a given time E, since we are dealing with

small vibrations. As a point of interest, if we were not considering

small vibrations, then the function t= t(e) and its inverse function

O = 0(t) would be the only tools with which we could obtain

information about the system.

Using the fact that we are dealing only with small vibrations,

we consider the factor sin 0, which makes Equation (1.6) a nonlinear

differential equation. We can write sin 0 as a Taylor series

expanded about zero.

0 n +1 3 5
sine= (n I) +2n+l 0 0 .

n 0(2n+ 0! 3! 5!
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Since we are considering only small values of 0, the terms in the

expansion above which contain powers of 0 are, in practice, ignored

(a very small number raised to a power greater than one becomes

even smaller). Any time terms are ignored we expect a certain

amount of error. To determine the exact amount of error would

require the same type of calculation that it would take to solve the

original equation. However, since we are considering only small

vibrations, we are assured the amount of error will not affect the

resulting solution. Thus, using the Taylor series expansion for.sin 0

we see that sin 0 can be replaced by 0, for small values of 0. This

substitution is only valid when we are dealing with small vibrations.

Using this substitution, the second order differential equation

(Equation (1.6) ) becomes

6+1- 0=0
L

This is a second order linear differential equation whose solution is

found using basic techniques from differcntial equations. (Basic

solution techniques are found in Appendix A.) We obtain

9=c cos( t)+ c2 sin(Lg t.

In summary, we have investigated two different ways to

p model a conservative elastic system. One method applies Newton's
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second and third laws directly to the system to create the

differential equation. The other method uses a technique developed

by Lagrange, which was much easier to generalize and could be

applied to many different types of systems. The derived equations

of motion, greatly simplify the amount of work necessary to model a

conservative elastic system. From these techniques, we found the

second order nonlinear differential equation that models the simple

pendulum. Since we considered only small vibrations, we found

that the equation could be represented by a second order linear

differential equation-which has an elementary solution.

Section 2 Linear Spring-Mass Systems

In the last section we considered a system which only needed

one coordinate to completely describe the system. We now look at

higher dimensional systems, such as spring-mass systems in which

more than one coordinate is required to specify the state of the

system. A spring-mass system is a conservative elastic system with

a stable equilibrium position occurring when all of the coordinates

are set equal to zero. To become familiar with spring-mass systems,

we will first consider the one dimensional case. Figure 2.1 shows

the system in its equilibrium configuration (the spring is not being

stretched or compressed) where m is the mass of the block and L is

the natural length of the spring. We are considering the spring-

mass system moving along a horizontal track rather than hanging
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vertically so that we do not have the added complication of

describing how gravity affects the system.

LI

Figure 2.1

To determine the number of coordinates we need to describe this

system, recall the formula given in Section I. (The number of

coordinates = (number of particles) times (dimension of the

system). ) The only particle in the system is the block and since the

block is moving along a horizontal track, the dimension of the

system is one. Thus, we need only one coordinate x, to describe the

system. Imagine the block being moved to the right causing the

spring to be stretched x units. This is shown in

Figure 2.2.

Figure 2.2

To describe the energy of this system we again need to find both

the kinetic energy and potential energy. The kinetic energy is one

half the mass of the block times the velocity squared. The equation

* describing the kinetic energy is
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(dxm ,-1) .2
2 .dt, 2

The energy stored in the spring or the potential energy of the spring

is one half the spring constant times the square of the distance that

the spring is stretched. From the laws of physics we know that the

external force acting on the spring is proportional to the increase in

length of the spring. We call the constant of proportionality that

allows us to write this relationship as an equation, the spring

constant or the stiffness of the spring and each spring has its own

specific spring constant. If we let k represent the spring constant

and x the displacement of the spring from equilibrium, then the

equation for potential energy is

1 2
V= kx

Since x is the only coordinate needed to describe the system, we will

only need to use one of the equations of motion found in Equation

(1.5)."

S:-a ax'

To find the left side, we first differentiate the kinetic energy

function with respect to x.

aT•- m x
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Now differentiate this equation with respect to time.

d FZT-1
d-t L/) _* J

To find the right side of the equation of motion, we differentiate the

potential energy function with respect to x.

- - k xax

Equating these two, the equation of motion becomes

mR=-k x.

Simplifying and rearranging terms, the differential equation which

models this system is

x+ k•-=O

This is a second order linear differential equation whose solution is

found using basic techniques from differential equations. (See

Appendix A.) Note, the similarity between this differential equation

and the one that models the simple pendulum.

=mcos (,m t )+ c 2 sin (,m t)
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To be able to model higher dimensional spring-mass systems,

we need to study the theory which describes the energy of the

system in general terms. In the one dimensional spring-mass

system there was only one coordinate which we labeled as x and it

was expressed in terms of time. The kinetic energy of the system

was described using the first derivative of this coordinate with

respect to time, while the potential energy was expressed in terms

of the coordinate. If we are working with a higher dimensional

system which has n coordinates, say xI, x2 .  xn, then the kinetic

energy will be described using the first derivative with respect to

time of each of the coordinates and the potential energy will be

expressed in terms of these n coordinates. In general we have

n ,dx." n 2
Kinetic Energy T. dt) ==". m. _)

I=l i=l

S

Potential Energy V = . V where V. is the potential

energy 61' each spring and

s is the number of springs.

Since stable equilibrium occurs when XI=x 2 = ... =xn=O, we may

assume that the energy of the system is at a minimum in stable

equilibrium. This means the derivative with respect to any variable

must be zero when that variable equals zero. Thus, if we have a
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function which we wish to expand using its Taylor's series

expansion, as we did with sin 0 in Section 1, the expansion can not

have a nonzero linear term. For if it did and we took the derivative

of it, we would end up with a nonzero constant. Subsequently,

when all variables are set equal to zero, the constant would remain,

indicating that we do not have stable equilibrium, a contradiction.

Therefore, the Taylor series expansion for the potential energy does

not have linear terms. However, this expansion may have constant

terms.

Let us return to the spring-mass system. Figure 2.3 shows a

system in equilibrium with two blocks having the same mass m and

three springs possessing the same length and spring constant. To

determine the number of coordinates needed to describe this

system, we need to recall the formula given in Section 1. (The

number of coordinates = (number of particles) times (dimension of

system). ) The two particles in the system are the two blocks and

since both blocks are moving along a horizontal track, the dimension

of the system is one. Thus, we will need two coordinates, x1 and x2,

to describe the system.

Spring I m Spring 2 m Spring 3

L L L2 L L3

Figure 2.3

0
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Imagine the two masses are moved to the right causing the first two

springs to stretch by different amounts and causing the third spring

to be compressed. This is depicted in Figure 2.4.

m m

Figure 2.4

Now we determine the second order differential equation that

models this system. Thus, we need to find the kinetic energy and

the potential energy of the system. The equation below describes

the kinetic energy of the system shown in Figure 2.4.

I [m (-X-)2 +m 2 m 2=_-m i+R2T(cdX 2  2 1 r 2.

The potential energy of the system is the sum of the potential

energies of each spring. Spring 1 is stretched from its equilibrium

position by the amount x1, so the potential energy for spring F is

1 2V =-k x Spring 2 is stretched from its equilibrium position by

2

the amount x 2 -x1 , so that V 2 = I k(x 1) is the Potential energy

for spring 2. Spring 3 is compressed from its equilibrium position
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by the amount x 2 . Thus, the potential energy for spring 3 is

2V = -Lkx . Therefore, the potential energy of the system is
3 2 2

3 1[ 2 2 2 2_ 2

V= V=½k[xl+ x 2+ x +xJ =.-k 2x-2x x 2+2x
i=I

Since this system is described using two variables, xI and x2 , our

two equations of motion are

dd a rT 1 _V and d - T 1 Cx2

dt[cj-ax1  dt L'x] )X2

First, we determine the left side of each equation of motion by

differentiating the kinetic energy with respect to X! and i 2"

aT I [2x+0]=mx

aT I
a = 2 m[0+22j=mx 2a2 2

Then, differentiating each of these equations with respect to time,

we have

0
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Tt 1.. _4 -Em ý 1] =MR•

To determine the right side of each equation of motion, we

differentiate the potential energy with respect to x1 and x2 .

axV 2-k [4xl-2X2 +x ]=k[-2x +x2 ]

ax' 1 ___0 -

av I [0-2x +4xJ=k[x1 -2]
2ý 

2

Substituting this information into the equations of motion, we obtain

dt [ ax,

which becomes

mil1 k[-2x1 +x 2 ] or m• l:-[-2xl+X2]

and

di aT __ av
dt ca j a ax 2

which becomes

m 2 =k[xI 2xj or R2  [x, -I2 2
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We now have a system of second order differential equations which

can be written as the following matrix equation, where A is a

symmetric matrix.

x :2 "m- 1 2 x 2)

Since A is a symmetric matrix, all of its eigenvalues are real and A is

diagonalizable. We begin the determination of the eigenvalues of

the matrix A by

2 2X
det(AXI)=det 1 1=;. +4+3=(X+3)(X+ 1).

If we set det(A -XI) equal to zero and solve for X, we find the

eigenvalues are X=-3 and X=- 1. Since A is diagonalizable there exists
-I

an invertible (orthogonal) matrix P such that P AP = D. The matrix

D is the diagonal matrix whose entries along the main diagonal

consist of the eigenvalues of A and the columns of P are

corresponding eigenvectors associated with these eigenvalues. To

find P we need to find an eigenvector associated with X=-3 and one

associated with )X=- I. For X-=-3 we have the following matrix

equation.

1 - (xJji 2+x3 = , so xl=-X2

2
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If we let x I - 1, then x2  1 -I, and it follows that an eigenvector

associated with the eigenvalue X=--3 is ( ). To find an

eigenvector associated with X=- 1, we use the following matrix

equation.2+ 1 1 x,)-(-o ,=
1 -2+1 x2 x - x2 0 sox- 2

If we let x - 1, then x2 1. Thus, an eigenvector associated with

the eigenvalue X=- I is 1 . Therefore, these two eigenvectors are

the columns of the invertible matrix P( - 1

Recall that our goal is to solve the second order differential

k -
equation X =•- A X. If we multiply both sides of this equation by

-1 -1
P and use the identity P P 12, the 2x 2 identity matrix, we

obtain

(2.1) p-IX=p -R- A X- P- A(P PP X) -(- 'AP )P p- -

We want to get Equation (2.1) into a simpler form to make it easier

to solve. To do this we will let U = P X. This matrix equation can
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be easily differentiated with respect to time, since P is a constant

* -l
matrix. The first derivative with respect to time is U = P X.

Since Equation (2.1) is a second order differential equation, taking a

second derivative with respect to time yields U = P X. We

introduce the vector variable U into Equation (2.1) by substituting

U - P X into the left side of this equation. Then, if we substitute

P AP = D and U = P X into the right side, Equation (2.1) becomes

kU = D U. This system of second order differential equations is

keasier to solve than X -A X.

*I Exercise 2.1

Show why the system (- k-- D) U u2is

"- U X 0 1 Ul = mA

easier to solve than X = xJ -)(- )= k A X

Recall that we are trying to solve for the vector X.

Rearranging U = P X, we get X =P U, which tells us that instead

of finding X we need only find P U. Since we already know the

matrix P, we must find the vector U. If we multiply both sides of

kthe matrix equation U = - D U by the matrix P, we get

S
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P U =--PD U. Rewriting the left side of P U=- = -P D U, using them

notation where P(i) represents the i th column (i -I and 2) of the

matrix P, we obtain

P) I= (2)) pM C I+ (2)

P(pip )[uJ U~ P' UU 2

Rewriting the right side of P U = -LP D U, we obtain

mm

-k PD k 1 + 2

7ýk 04
Thus P U =-•-P D U can be written as

p(1) + p(2) k2 [p(,) X, F . + p(2)2 X

k
We can simplify this equation by multiplying through by •'.

gathering terms and moving all terms to the left side.

(1) (2)
Factoring out P and P , we have

u °p2 0
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Since the columns of P are eigenvectors of A which correspond to

distinct eigenvalues, we know they are linearly independent (in fact

they are orthogonal). The equation produces a finite linear

combination of linearly independent vectors which equals zero, thus

the coefficients of P(1) and P(2) must be zero. If we set each of the

coefficients in the equation above equal to zero, we obtain

k X u =0 and 11--K u =0
1 M 1 2 m 22=

These are both second order linear differential equations which can

be solved using basic techniques. (See Appendix A.) If we let

r. =-LX., where i= 1, 2, then these equations become

+l+rlUl=0 and a2 +r2u2=0

Using the following formulas, we can solve for the vector U. (Note:

To determine whether r. is zero, negative or positive, substitute Xi

into r. k )
m
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ii il ('r )i2

I i il

The solution to the original system of differential equations

kX A X is found by substituting the values for both the matrix P
-4-.4 --4

and the vector U into the equation X= P U.

Exercise 2.2

Using the above technique, solve the following system of differential

+ -2a
equations XmA X. Where X )a

-x (x1'2

X J. That is, find the two equations which describe x, and X2.

Exercise 2.3

Given a horizontal spring-mass system similar to Figure 2.3 with n

blocks, the following equations would express the kinetic and

potential energies of the system.
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Kinetic Energy T I=- m 2x

i=l

i b2 2 2
Potential Energy V =2 k b1 1X+b 22 2+ +bnn n

+2b 12 x x 2 +2b 13 xIx3 + ... + 2bInXIx n

+2b 23 xx +2b x 2x +...+2b x x

I.n I

+2b x x +2b x n

+ 2 bn-2. n-IX n-2X n-1 +2 n-2. n n-2 Xn

+2bn-I. n x n-Ix ]

Use the equations of motion to find the system of differential

equations which model the spring-mass system with n blocks. To

solve this system, generalize the procedure used to solve the system

of differential equations which model the spring-mass system with

two blocks. (Hint: Some of the material that has been discussed can

be used directly, while other portions will need some modifications.)

Another aspect of the spring-mass system that we want to

consider is the oscillations of the system as a whole. From our work
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above, we know the solution to the second order differential

"k -
equation X = A X can be found by using X = P U. In Exercise

2.2 we found

x = Ul +U2 and x 2 -=-ul+u2.

This is a system of two linear equations which we can solve for u 1

and u 2 . Thus we have the equations

xl-x 2  Xl+-iX 2
(2.2) U. - 2 and u 2= 2

each of which gives a relationship between the variables xI and x2 .

It is important to note that we could have found these equations

directly from the matrix equation U = P X, but this would involve
-1

finding P . Using Figure 2.5, we can recall the configuration of

this spring-mass system. Since the springs were stretched by:

differing amounts, a different frequency (the number of vibrations

per unit time) is associated with each of the variables x, and x2 .

0
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Frequency 1 Frequency 2

Figure 2.5

This spring-mass system has two separate modes in which it

vibrates.

In the first mode u - 2 and u20. Since 2

represents the how the distance between the two blocks is

changing, the first mode of vibration describes how the distance

between the two blocks is changing. For instance if x2 is greater

than xI, then the change in distance between the blocks is smaller

than the distance between the blocks when the spring-mass system

is in equilibrium. However, if x is greater than x2 , then the change

in distance between the blocks is larger than the distance between

the blocks when the spring-mass system is in equilibrium. Thus,

the oscillation of the system in this mode is described by how the

distance between the two blocks is changing which corresponds to

the frequency associated with the second eigenvalue X2 . To

visualize this, consider the series of "snapshots" of the spring-mass

system in motion in Figure 2.6, where the banner is made of an

* elastic material and indicates the distance between the two blocks
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in the system. When this system vibrates, we would see the banner

contracting and stretching with a frequency associated with X2"

0

Figure 2.6

I_ _ 2 I 2.
In the second mode u 0 and u 2 = 2 Since 2

represents how the center of mass of the system has changed, the

second mode of vibrations describes the displacement of the center

of gravity. Thus the oscillation of the system in this mode is where

the center of mass of the system vibrates at the frequency

associated with the first eigenvalue X1. To visualize this, consider

the series of diagrams in Figure 2.7, where the flag indicates the
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center of mass of the system. When this system vibrates, we see the

flag moving back and forth with a frequency associated with 1I

This is indicated by the following series of "snapshots" of the spring-

mass system in motion.

Figure 2.7

Exercise 2.4

Suppose the spring-mass system we have been studying was lying

free in the xy-plane, that is, the ends of the springs are not

anchored. Figure 2.8 can help us visualize this.

... ..
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y-axis

x-axis

Figure 2.8

Using the information we have gained by studying the stationary

spring-mass system, describe the motion (including the vibrations)

that can occur. Note, there is no need to find the frequencies to

complete this exercise. (Hint: consider other types of motion,

besides vibrations.) 0
Exercise 2.5

(a) Determine the system of differential equations that model the

motions of the spring-mass system given in Figure 2.9.

(b) Solve the system of differential equations.

(c) Describe the possible configurations in which it vibrates.

Sping 1 m Spring 2 m Spring 3 m Spring 4

I- -4----- L -H--- -L---i- L-
L2 L 2 L3 L 4

Figure 2.9

0
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Exercise 2.6

Suppose the spring-mass system of Exercise 2.5 was lying free in

the xy-plane, that is, the ends of the springs are not anchored.

Describe the motion (including vibrations) that can occur for this

system. Compare these motions with the motions found in Exercise

2.4.

Section 3 A Closed Spring-Mass System

In this section we will discuss how to mathematically model

the spring-mass system in Figure 3.1 and determine the possible

motions of the system. This system lies in the xy-plane with none of

its blocks anchored. The mass of each of the three blocks is the

same and is denoted by m. L is the length of each spring when the

system is in its equilibrium configuration and k is the spring

constant, which is the same for. each spring.

0



44 @

Y2

(1 2L

0) X3 -L I I .

Figure 3.1

This system is in stable equilibrium when the displacements

x -YC=X2-Y2=x 3=Y 3 =0. To find the energy of the system in Figure

3.1 we need to find the kinetic and potential energies of the system.

Recall that the kinetic energy of the system is one half the mass

times the sum of the square of the first derivative of each of the six

variables with respect to time. Thus, the kinetic energy is

1=L (.2.+X2 .X2 .y2 .y2 .ý2)

Finding the potential energy requires more work. Since the

potential energy ofthe system is the sum of the potential energies of

the springs, we first need to find the potential energy of each spring.

We will consider each side of the triangle individually.

The first side that we look at is given in Figure 3.2. 0
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22 ( 2 9 -2 L y 2 )

•x2

r dFigure 3.2

The potential energy of this spring is one half the spring constant k

times the square of the distance that the spring is stretched. If we

let d represent the length of the spring after it has been stretched,

then the displacement of the spring from its equilibrium position
(the distance that the spring is stretched) is Id-LI. E)xpressing the

potential energy for the spring in terms of Id-ELI, we have

vk2 = 2 kid- LI2

where the subscript 1 2 of V indicates that we are finding the
* potential energy of the spring that is stretched between the block
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with coordinates xI and y , to the block with coordinates x2 and Y2

Now, we want to rewrite V 12 using the variables x 1 , y 1, x2 , and Y2.

To do this, we must first simplify the expression for the distance d.

d { [(.L+ , -X 2 ]2 + [yL + 2)1]2 }2

2{ E Cx-D 21E -2~+y,
II

2 
2

-1 1- 2xI( ,) l }2)

4{-J+L2+L(x, - X2)(4 2Y 2J

j +2 
+ (-' 2 

•] L ( Y - Y 2)]y12
=• L I+ _L R I - J ./yA + (

We want to rewrite the quantity

2

I +-(x, _x _ (Y',_ y ]+7 ,_X IX)+y 2

L 1- ) - v/3
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using its Taylor series expansion. The terms of higher powers have

been grouped together for convenience.

d +2 I2 - /3 (I A + terms of higher powers

Exercise 3.1

Verify that the expression above is indeed the Taylor series

expansion for the quantity f Q-) (shown below). Hint: write fI(-)

in its Taylor series expanded about zero. Recall that L is the length

of the spring in equilibrium, thus L-0. (Hint: To make it easier to

take the derivative of f let r= I-and find the derivative of f(r).)
Q9, L

I2 2

The expression preceding Exercise 3.1 can be simplified by

multiplying through by L and then moving L to the left side. The

resulting quantity is what we want.

0
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d- L±[(x- x2  --/(y 1 -~)I terms of higher powersd-L=- L -R 21

This quantity can now be substituted into the formula for the

potential energy V 1 2

V =-'kld-L12

12 2

S{f[4 x /3 (v' -_ y + terms of higher powers]}

24{L[(x -x --v'3(y -y•]2+ terms of higher powers}

Recall from an earlier discussion that the Taylor series expansion for

potential energy can not have any nonzero linear terms because we

are in a system which has an equilibrium configuration. Also, we

are only considering small vibrations so we ignore the terms of

higher powers. The formula for potential energy V 2 is

v 12 = 2 {L[(x-x 2 )-V 2

22 2 ?y

k xl +x2+3y 3y1 2 x x 2 fxY
2".4= 4-+ 4"- 2 1y 2  x2  2 -xYl 21

+ ý3 y- %f 2Y2 - "2Y y
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Exercise 3.2

Using Figure 3.3, find V2 3 . Hint: the procedure is similar to the one

used to find V 12.

Y2

x2

Y3

* X3

Figure 3.3

Exercise 3.3

Using Figure 3.4, find V1 3"

Y3 Y I

Figure 3.4

As stated before, the potential energy of the system is the sum of the

0 potential energy of each spring. Thus we have



500
V V 1 2 +V2 3 + V1 3

k f 5 2 . +52 + 3 2 3 2 3 2 XX 2  x 2x3
7 4 TX+ x2+ 'x3+ V'Y+ y2 +;Y3 2 2

-2x Ix 3-l yy- -Vf + :,L3 x 3

2 3Y2Y- 22Y3+2 3Y3.

We recall that the kinetic energy is given by

S 2I .2 .2 .2 .2 .2)

T= -m ( +x2 +x +Y + Y+ .

Since this system requires six coordinates to fully describe it, we

know we must have six equations of motion. These are

d T _ V [aT2] d[_2T _aV

dt [ý ax1  ax 2 dt ax3  1 x 3

d [ "T aV [a5] aV and d [ )T ]a V
ld x] a x a aax an d t I aT axd- =a4 x5 Q- x6

First, we find the left side of each equation of motion, then find the

right side and equate the two. Thus, we have the following six

equaticns. 0
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52= +xI-+x2 + %5- yl 3I 414--- V2- 4 -Y 4 Y32

k-1= Lx- -X2+ l x - X2 f- "•Yl + -TY2 3

2 m 4•4-2 4 X 3 + 24  Y 34

S3• 1 4 x 2 4 3 4"Y2 - -4" Y 3

I 4 1 4f 2T 4T 3Y 1

=-----x + -fTx + -y- +-
2 1 4 1 4 3 41I-2Y2 4Y3

Y3 M{ 4 X 2  4 X3+4243

This system of six equations can be written as a matrix equation. In
k

order to eliminate fractions from the matrix, we factor k out of
k

each equation, which results in km being factored out of the

coefficient matrix A.

-5 1 4 3-%f- 0

x 2  1 -2 I -Vi 0 f X2

3 k 4 1 -5 0 - x 3  kA'

I = "4m - -, 1- 0 -3 3 0 Y1  4m

V2f -%0 /3 3 -6 3 y 2\1 3 1 -VT-vr 0 3 -3 \1Y3
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The generalized theory developed in Exercise 2.3 describes the

situation when n=6. Thus, we begin by finding the eigenvalues and

eigenvectors of the symmetric matrix A. One way we could proceed

would be to use the sixth degree characteristic polynomial to find

the eigenvalues directly. However, this would require finding the

determinant of a 6 x 6 matrix. Using the cofactor expansion method

would require 6! or 720 calculations to find the value of the

determinant. We could also use a computer program. For example,

the user's guide to the computer program LINPACK (Dongarra,

Bunch and Stewart, 1979) describes how the program can be used

to approximate the eigenvalues and eigenvectors of the

characteristic polynomial. This would be quicker, but would not

give us any insight into the possible types of vibrations of the

system. Instead, let us consider the symmetric matrix A and see if

we can use our knowledge of matrices to reduce the amount of

work required to find the eigenvalues. In general, the coefficient

matrix which represents an application is much larger than a 6 x 6

matrix, but is still a symmetric matrix. The approach used by

applied mathematicians working on large systems would be tO: 1)

manually work through the theory of a smaller, related, and less

complicated system, 2) enlarge the system and use a computer to

find the eigenvalues and eigenvectors, 3) interpret the physical

meaning of the information from the computer by comparing the

results with the results found in step 1, and finally, 4) change the

model so that it reflects the desired system as closely as possible.

For example, in a more complicated system not all of the blocks may
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be of the same mass, nor the springs be of the same length or have

the same spring constant. Step I may be to consider a system

where all of the blocks have the same mass, the springs are all of the

same length, and each spring has the same spring constant.

Therefore, we will start our work by finding the determinant

of the matrix A-.I

-X 1 4 -ý/3 -V3 o
1 -2--X I --V3 o Vr

det (A - )= 4 1 -5 - . 0 %1 -%Vf
V- --V% 0 -3-X. 3 0

-%f 0 V' 3 -6-X 3
o V-3 --vT 0 3 -3-X.

Next, we replace the first row by the sum the first three rows and

replace the last row by the sum of the last three rows to obtain the

following interesting matrix.

-. -. -x 0 0 0
1 -2-X I -VT 0 VT

4 1 -5 -X 0 v- -V/T '3 A = I
VT -V3 0 -3- X 3 0

-/V 0 V 3 -6-X. 3
0 0 0 -X -X -X

If X were set equal to zero, the matrix A', defined above, would have

two rows of zeros indicating that X=0 is an eigenvalue of A with

multiplicity - 2.
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We pause for a moment in our pursuit of eigenvalues to find

the eigenvectors associated with X-0. To begin, X=0 is substituted

into A' so that the matrix equation A' X = 0, which has been written

in augmented form, can be solved.

0 0 0 0 0 0 0

l -2 1 -v 0 -3 0
4 1 -5 0 % -v 0

-V" --V 0 -3 3 0 0--v/3 0 -%vf" 3 -6 3 0
0 0 0 0 0 0 0

Using Gaussian elimination, we reduce this system to a form that

can easily be solved.

1 0 -1 0 0 0 0
0 1 -1 0 %f -v'- I 0

(3.1) 0 0 0 1 -2 l o
0 0 0 0 0 0 0
0 0 0 0 0 0 0
"0 0 0 0 0 0. o

From this augmented system of equations, with three rows of zeros,

we know three of the variables (x3 , Y2 and y 3 ) can take on any

value, forcing the remaining three variable (x1 , x2 and y I ) to take

0
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on specific values given by the following equations, obtained from

the augmented matrix in Equation (3.1 )..

x I=x3

(3.2) x2 x- 3 -• y"2 + V-/y 3

yI =2y 2 - y 3

Thus, by letting x 3 , Y2 and Y3 take on specific values, we will have

three linearly independent eigenvectors. This means the eigenvalue

-=O must have multiplicity three.

Before we actually determine the values of the eigenvectors,

let us pause for a moment to see how we can rewrite the potential

energy function in a slightly different format which will help us to

determine its value under certain conditions. Recall, the potential

energy of the system is the sum of the potential energy of each

spring. Thus we have
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V V 1 2 +V2 3 + V1 3

= 'jXl2+ X2+ "X3+ 3Y2+ 3 Y2 +3 2 X1X2  X2X3

2 4 1-f 2 T 3VI T 2V;3T

N(----3 -3x yr- 3Y2 - 2 X2 y 3  2 3+3

-5 1 4 Vr3" -%f 0)
1 -2 -,V 0 V/ 2

k 4 1o -5 0 V-v/ T X3
=('xI x2' 3 y2y 3)8 - -.%,/- 0 _-3 3 0 Y

-- 0 0 -V 3 -6 3 y2
0 "- --,1- 0 3 -3 kY3

We are able to rewrite the potential energy in this format because A

is a symmetric matrix. We define a function which can be rewritten

in this fashion as a quadratic form. Thus, Equation (3.3) is the

potential energy expressed as a quadratic form.

(3.3) V X - A X
8m

By the definition of an eigenvector X, which is associated

with the eigenvalue X of the matrix A, we know that A X = X X. If
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we let the three eigenvectors, associated with the eigenvalue X=O. be

represented by X , ,X and X , thenkl=0 2=0 =0
1 2 3

V -j0 +T -k-T kT -
AX X- kX-= -OX =0

0 =0 -g m A X Xm=0= X =0 = XX 8"m=

for j- 1, 2 or 3. This tells us that the potential energy is zero. We

now examine the physical interpretation of zero potential energy.

To have zero potential energy in the system, all the springs

must remain the same length L as in equilibrium. Thus, the only-

type of motion possible occurs when the entire system moves as a

unit. This is called a rigid motion. Since the spring-mass system

lies in the xy-plane, there are only two types of rigid motion:

translations (movement in the x- or y-direction only) and rotations

(the system pivots around its center of mass). These two motions

can also be combined.

If we consider the vector X , as a translation in the x-direction

only, then the variables xI, x2 and x3 must all change by the same

value and the variables y 1 , Y2 and Y3 can not change. We can
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c
C
C

express this vector as 0 If we let c= I, an eigenvector associated
0
0

I

--4

with the eigenvalue ?.=0 is X X =0 0 The graphical

0

0

interpretation of X can be seen in

Figure 3.5.

System Motion:
Translation along Y2= Resulting
the x-axis = 21 vector

Center
of

mass

S0 Resulting 0 1 Resulting
3 vector vector

Figure 3.5
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If the translation is to the right (in the positive x-direction), then c>O

and if it is to the left (in the negative x-direction), then c<O.

Exercise 3.4

'1
-* 1

Verify that X = is a solution to

0
0

V X .= X -" A X. 0°
( %jj= X m X-=

The other type of translational motion we wish to consider

occurs when the system moves in the y-direction only. The

variables x 1 , x2 and x3 do not change while the variables y 1, Y2 and

Y3 must all change by the same value. We can express this vector

0
0
0as If we let c= I, an eigenvector associated with the
C

C
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(0

0
-4 0eigenvalue .- 0 is X X =0 I The graphical interpretation of

X can be seen in
•2;

Figure 3.6.

Resulting

System Motion: vector
Translation along 72- 1
the y-axs

X2 0

Resulting Center Resulting
vector of vector

73= mass Y,=

3

Figure 3.6

If the translation is upward (in the positive y-direction), then c>O

and if the translation is downward (in the negative y-direction),

then c<O.
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Exercise 3.5

(0)

0
-.4 0Verify that X = is a solution to

"V =0 I
2

I

VX =XA =0. •='w e

.1 2

they are orthogonal. That is, their dot product is zero. Since the

eigenspace associated with the eigenvalue X=0 has dimension at

least three, we know there is a third linearly indepen dent

eigenvector associatedwith the eigenvalue X=0. There are two

ways we could proceed at this point. The first is to use the three

equations in (3.2) and choose values for x3 , Y2 and Y3 - For

example, let x 3 =0, y 2 = 1 and y 3 =0, then use the Gram-Schmidt

0
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process to find a vector which is orthogonal to both X I =0 and

X The other way is to replace two of the rows of zeros in theX. 2 =0

T
coefficient matrix in Equation (3.1) by the eigenvectors X and

I =0

T

X 20 The solution to this new augmented matrix must satisfy all
2

the equations which form the augmented matrix. Hence, the

solution to the augmented system will satisfy both xI +x2 ÷x3 =0 (from 0
X X, =0 and Y.÷y 2 -y3 =0 (from X X =0 ). A vector whose entries

I 2

satisfy both of these equations is orthogonal. to the eigenvectors

X and X •. Also, from these two equations, we see in the
2I 2

solution to the equations associated with the augmented matrix, the

xi values must sum to zero. Therefore, there is no translational

motion in the x-direction. Similarly, there is no translational motion

in the y-direction. Thus, the center of mass does not move. Since

this motion is a rigid motion (X=O) and the center of mass of the

system does not move, the rigid motion must be a rotation.



* 63

Reducing the following augmented matrix which is Equation(3.1)

T T
with two of its rows of zeros replaced by X and X

1 0 -1 0 0 0 0
o 1 -1 0 -v' -V 0
0 0 0 1 -2 1 0
I 1 1 0 0 0 0

0 0 0 1 1 I 0
0 0 0 0 0 0 0

we obtain

1 0 0 0 0%3 0
3

0 I 0 0 0 3~ 0oo Tb o 2 l
03 lo

0 0 0 1 0 1 0

0 0 0 0 1 01 0
0 0 0 0 0 0 0

This augmented matrix above, can be interpreted as the following

equations.
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l 3 3

2 3 3

=- Iy
X V-3 y3

3X 3 3

y2=0

-V\

-\f
If we let Y3 =3, then the resulting eigenvector is X x 3=0 -3

3

The graphical interpretation of X can be seen in Figure 3.7.
3. =03
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System Motion: =

Rotation . Reuli02)• xz -=2V/ Resultin g
2= vector

Center
of

Resulting 73= 3 mass
vector

X X'

Resulting Y " 3
vector

Figure 3.7

0

Exercise 3.6

-V/T
2,VT

Verify that X = is a solution to

0
3

v Xxo 0) o X A X =J= X .0 8 A =0

0
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-4 -+ -4

Also, verify that X is orthogonal to both X and Xk =:0 i = 2 0

So far we have found only three eigenvalues and their

associated eigenvectors. The remaining three eigenvalues can be

found using the determinant of the matrix A-MJ which can be

reduced to I AlJ. For convenience, I A] has been repeated below.

-• -x -x 0 0 0

1 -2- X -V- o V0 JAI4 1 -5 - X 0 v3 --v/- =]A'I
Vo -VT 0 -3- X 3 0
-V3 0 VT 3 -6-X 3

0 0 0 -X - -X

Using Gaussian elimination, we will reduce the matrix to a form

which will make the determinant easier to find. We will use only

row (or column) operations that do not change the value of the

determinant. After several row operations, we obtain

1 1 1 0 0 0
0 -3-X 0 -2%3 -VT 0
0 -3 -9-X VT 2V- 0
0 -2V3 -VT -3-X 3 0
0 -3-VT 0 -6- 2X -3- X 0
0- 0 0 1 1 1

0
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At this point, we could find the determinant using the cofactor

expansion method. However, if we do one column operation we will

greatly reduce the number of calculations needed. We add -2 times

the fifth column to the fourth column producing a new fourth

column.

I 1 0 0 0
0 -3-X. 0 0 -IvT 0
0 -3 -9-X. - 3-V3" 2-VT3 0

0 -2"vr3" --%/3" -9--; 3 0
0 -3V-3 0 0 -3-X 0
0 0 0 1 1

We are now ready to use the cofactor expansion method to find the

determinant of the matrix A'. Expanding by the first column we

have

-3-X0 0 -V"T 0
-+3 -9-X - 3V-3 2V'T 0

I A'= 1(- 1) -2-/3" --v/3 -9-X 3 0
-3 V% 0 0 -3- X 0

0 01! 1

Now, expand the resulting cofactor by the fifth column.and obtain

3-X0 0 -VT
A'I 11 (_ 1) 5+5 -3 -9-X• - 3"VfT 2-V-3"-2-V/ -VT -9-x 3

-3 VT 0 0 -3-X

0
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Next, expand the resulting cofactor by the first row.and obtain

; 1 3 - -f -93
0 0 -3-X

-3 -9-k -3%/-3
+ -'( 2) 3+ _2.f3• _ - -9- X.

-3"V-" 0 0]

g _X)2_ 91][- 3-) 2_ 9].

To find the eigenvalues of the original matrix, we set each factor

equal to zero and solve for X.

2 2(-9-_) -9=0 (-3-X) -9=0

g-9- 2=+9 (-3-) =+9

1=-12, -6 X=- 6," 0

Since we have already determined that the eigenvalue X.=0 has

multiplicity of at least three, the fact X=0 occurs above should be no

surprise. The remaining eigenvalues for the matrix A are ).=- 12 and

X=-6, the latter with multiplicity 2.
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To help us find the associated eigenvectors for the remaining

-4* 
-4

three eigenvalues, we recall the equation A X X X x from the

definition of an eigenvector X , and Equation 3.3

V )= T k X+which describes the potential energy as a

quadratic form using eigenvectors. As we saw earlier, these two

equations can be combined as V ( X J= X 8 M,-XX x. We•. •.8m •

observe that the only way this equation can equal zero is if X=O or

X is the zero vector. However, since we are only looking at )L=- 12

or X=-6, which are nonzero values, we must have that X be the

zero vector in order for V( ) to equal zero. Clearly this cannot

happen because X is an eigenvector which by definition is never

equal to the zero vector. This indicates that the potential energy of

the system is not zero. Hence, the potential energy of each spring is

not zero, so the length of at least one of the springs must change.

Thus, we do not have a rigid motion. Also, we recall that the

determinant of the matrix A-%[ can be reduced by summing the first

three rows and the last three rows to give I A'1.
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-x -2 -- 0 0 0

I -2-k. i -VT" 0

4 1 -5 -X 0 VT -VT -IA'1
VT -VT 0 -3-X 3 0

-V o -VT 3 -6-X 3
0 0 0 X -X

If we substitute in X=- 12 or X=-6, the first row will contain constant

values for x 1, x 2 , and x 3 and the last row will contain constant

values for y 1, Y2 , and Y3 . From an earlier discussion (following

Exercise 3.5) this indicates there is no translational motion in either

the x- or y-directions, so we know the center of mass does not move.

Thus the motion associated with the last three eigenvectors can be

thought of as vibrations of the blocks (but not a translation or

rotation) with the center of mass remaining fixed.

First, we find the two linearly independent eigenvectors

associated with the eigenvalue X=-6. Since X=-6 has multiplicity

two, the solution space of the augmented matrix, (A- X) X = 0 or
-4) -4.

(A+ 6 1) X = 0 will have dimension four. That is, when the

augmented system is reduced, we will have two rows of zeros.

Thus, four of the variables can be written in terms of two of the

other variables. These two variables can be assigned values which

will produce.two linearly independent eigenvectors. If we let x2

and Y2 be these two variables, then xP, y 1. x3 and Y3 can be written

0
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in terms of x2 and Y2 " One way to assign values to x2 and Y2 and be

assured of getting a linearly independent eigenvector, is to first let

x 2 =0 and y 2 = 1, and then let x2 = I and Y2 =0. Let us consider the

geometric interpretation of these cases.

CASE 1. x2 =0 and Y2 =--

Since the center of mass for this configuration remains fixed, the Y2

component must be balanced by the sum of the y, and the y3

components. Because x2 =0, we know the components x, and x3

must be equal in magnitude and of opposite sign. These components

can be seen in Figure 3.8.
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System Motion: Resulting
Stationary Vibration vector

•X2' 0

Center
of

mass

x3=- c 47x c

Resulting eResulting
vector 7 3 2 Y 2 vector

Figure 3.8

Letting c= 1, one eigenvector associated with X=-6 is

1

0
-1

-- 4
x 6- _

2

CASE 2. x2 =1 and Y2 =0
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Since the center of mass does not move, the x 2 component is

balanced by the sum of the xI and x 3 components. Because Y2=0,

we know the components y, and Y3 must be equal in magnitude

and of opposite sign. These components can be seen in Figure 3.9.

System Motion: Y2-= 0
Stationary Vibration x2 = 1 Resulting

vector

Center
of

mass Resulting Y =c

1 2
Resultingvector Y 3=- C

Figure 3.9

Letting c= 1, a second eigenvector associated with X=-6 is

-* I

x x=-6 2
2 1

0

0 -1
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Exercise 3.7

Show that X and X are orthogonal (their dot product isk =-6 X -6
I 2

zero).

-== -=4

Therefore, { X X X X is a set of orthogonal eigenvectors
I - 2

associated with the eigenvalue X=-6.

It remains for us to find the single eigenvector associated with

the eigenvalue ;=- 12. To do this we will substitute -12 for X inIA'
--4 --4

and solve the matrix equation A' X = 0.. When we do this, we get

the following augmented matrix.

1 0 0 0 0 v 0
0 1 0 0 0 0 0

0 0 1 0 0 -VfT 0
0 0 0 1 0 -1 0
0 0 0 0 1 2 0
0 0 0 0 0 0 0

This augmented matrix above, can be interpreted as the following

equations.

S
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X 2 =0-,•y

y 3 3

X =0

2

=y

Yl y 3

Y2 =-2Y3

-,/T
0

I1" we let y 3 =1, then the resulting eigenvector is X = V

* -2
1

The graphical interpretation of X can be seen in Figure 3.10.

0
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System Motion:
Stationary Vibration

2 - 2 , Resulting
vector

-1 Resulting Resulting yl=

vecto enter vector

x3 = -v3 mass x

Figure 3.10

I VT 0- 1) - 1/2 0-v'T
1 0 2-f-0 1 0

u 1 0 _F3 - 1 -1/2 V is an
Thus, 0 1 -3 -1/2 1 1

0 1 0 1 0 -2
•0 ,/ 1, 3 - /j

orthogonal set of eigenvectors of A associated with the eigenvalues

0,0,0,-6,-6 and -12, respectively. We normalize these orthogonal

vectors to get the following orthonormal set of eigenvectors.

0
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3 0 6 7 14 2
VT o V-T o"7•

3 3 V-1 - 7_
3 of3- 14 -

3 1 14 6

0T 2 14 7
0 3 0 7 0 3

0 VrT I -VIT VT-4NFo 3 2 14 7 6

If we let the eigenvectors above form the columns of a matrix P,

then P is invertible and P- AP=D, so P -AP = -D where D is a
4m 4m

diagonal matrix with the eigenvalues 0, 0, 0, -6, -6, and -12 as the

entries on the diagonal. Since our goal is to solve the differential

equation X = AX, we will let U = P X, then apply Exercise

4mm k2.4 with n'-6, where we have factored -out of the matrix A

instead of -. Thus P U = .- P D U becomesm 4m

(1)(2 p(6). = kF__[p u), (2)•. (6)6
p(i) 6+P(2) +... + 6X U+PX u +...+P u

12 6 4mL 1 1 2 2 X6

where XC=X 2 =ýX3 =0, '4 =;X5 =-6, and X =-12. This equation can be

k

simplified by multiplying through by k , gathering terms and

moving everything to the left side.
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P~ 4 mI 17 1ut +P22- 4 2u2 +

+ P (6) k6-() u6
64 X6 6 1= =0

(1) (2) (6)Factoring out P P P we have

ft 1 4m I u 1P+ [f2 4ým- X2 U+2 + [j6 - -4k-X 61i = 0

Since the columns of P are orthonormal eigenvectors of A, we know

they are linearly independent. Thus, we have a finite linear

combination of linearly independent vectors which equals zero, soth ceficens f (l) p(2) p(2)
the coefficients of P), P ...... ) must be zero. If we set each of

the coefficients in the above equation equal to zero, we have

6 u =0 r IXCI 4m I I I 4m I I

S X---u = 0 or 2i - u2 4m 22 24 n 22
k k

k -Xu =0 11 X.6u6 4m 66 6 4m 66

Since X1 ='2=X3 =0, X4 =X5ý-6 and X6 --12, these differential equations

become
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G =0 0 -3k u

S4 2M 4

3k

02=0 5 2m =5

3kG 3 =0 0 6 =- --- u 6
3 6 Mj j- 6

These are all second order linear differential equations which can be

solved using basic techniques. (See Appendix A.) The solutions are

U =C t+ CI II 12

2c21 t+c22

u 3 =C31 t+c32

u 4 =c 4 lcos( 2/ t)J+c 4 2 sin( 3-t)

U5 =C5 1 s 2 +c 52 in t)

u 6 =C 6 ,COS(-• t)+ C 62 sin (m1 t)

These solutions can be written as a matrix equation which can be

substituted into X =P U.



80 @
+ P U

0-J3f -- f14 17ct+c3 6 7 14 2 I I 12
"T •21t 22

F 0 -2L3• _ 04" _ E14 _ C321 t + C323 3 7 1
.j 0/ j_--I f 14 f14 C431 C +O 32

314 2 Cos AC ( 1 k t
3 - /j" - T76 c co sL 3- 2 t)+c 2sin 32k -tI

o T,3 2 E14 4 E 1 q 2m 542 4 12m-
- " + 5 sin(

Ir 1 J J14 rl J'r C 61COS6
3 7 14 7 6

The solution X to X -L A X is found by multiplying the matrix P

-4 
-+

by the vector U. The components of the solution vector X are

-2Lt +C --ý _C -ýEt-_C -L+ CCo(/3I- If-3 12 3 31 6 32-6 41 7 2m

+C%14sin 3kt)Cs Cos r t)k4C42 7m !5 44 M

- ,(3k t) - .tin(/sin ' L

-C sin t LC, 62(F ~
5214 2 m 61 2 6223

2t11C3 12 3 31 -3 32c3 51 7 t

-C 5 ~sin ( [ )
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=c -t+c -- 3 t -t- 4 t

_4 12 t c - v51 14Cos
-6 326 41 76126

-c si n  4t c Cos( t42 7•-'- ) 51 14

"-C I4ksin( 32 k) _ (./Ekt)+c sin52 14 t) 6 I2m 61m2 622 kt

=C -f-t+c52-- f 3-t _ c o -Lcos in- Co (t)-

YC213Tt+c 22-3 -312 322 4 14

- c1 si k2• o t) +C Cosn f t3

4214 2 n51 7 ML

--•C sio( / tt+c + csin (4k• t)-c 5 2 7 2m 6 1 6Cos(J t)+ 62

06

y VfT+ VT Cos (3k t +si( 3~ky2 = 2 1 -3 2 2 3 + 4 1 co7 2m )42 7'~ 2m .

61 3 osN 62 3 s ny.\/W L)

3 13 22 3 31 2 32 2 41 -\32m \-3 'C - -CCs --

ITT si( 3ýk t)_c CsKýE
42 14 '.2m 51K)L

C52 7 V 2m )+C61 6 ~cos(QEMit)+6 6 L~sn~-.)
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It is possible to determine the values of the cij provided we have

been given enough details about the system which we have

modeled. Since the values of m (the mass of the spring) and L (the

length of the spring in equilibrium) are given, and if we know the

value of each cij, then we will be able to find the value for each xi

and yi at a given time.

We now want to apply the theory of the spring-mass system

which we have just studied to understand how this system models

the vibrations of a water or H 2 0 molecule, as shown in Figure 3.1 1.

Oxygen 0

0
bond bond

0 0
Hydrogen Hydrogen

Figure 3.1 1

Figure 3.1 has three springs, but the water molecule has only two

bonds. The third spring represents the repulsion force of the two

hydrogen atoms. A water molecule which lies in the xy-plane would

have a translational motion in both the x- and y-directions as

described in Figures 3.5 and 3.6. Also, the molecule would be able
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to rotate, as we saw in Figure 3.7. Moncrief and Jones (1977)

explain the three vibrational modes for H 2 0 using Figure 3.12.

/o0 /o\ /0\
H H H H H H

0

H H H

o 0 0

H H H H H H

0\/ 00,o 0~ o
HH H

H H H

(a) (b) (c)

Figure 3.12

The vibration in Figure 3.12(a) is called a symmetric stretch since

the bonds between the both hydrogen atoms and the oxygen atom

are stretching by the same amounts at the same time. We have

already considered this type of motion in Figure 3.8. In Figure

3.12(b) we see an asymmetric stretch which is due to the fact the

bonds between the hydrogen atoms and the oxygen atom are being

stretched by the same amount but not at the same time. Figure 3.9

describes th'is same mode of vibration in the closed spring-mass

system. The final mode of vibration is called symmetric bending

and is seen in Figure 3.12(c). This vibrational mode consists of the
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hydrogen-oxygen bonds remaining at the same length, but the two

hydrogen atoms vibrate by moving further apart then closer

together. We have already seen this in Figure 3.10.

0
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Appendix A: Review of Differential Equations

We will limit our discussion to second order linear differential

equations with constant coefficients. This appendix is not meant to

replace a differential equation course, but only to show how to solve

a very select group of differential equations. The second order

linear differential equations which we want to solve are of the form

(A.l) R+mx=0,

where the coefficient of the x-term is a constant which we denote

by m. Any second order differential equation which can be put in

the form of Equation (A.I) is called a linear differential

equation. The differential equation R+ m sinx=O is no longer

linear because sinx is a nonlinear function of x. The method used to

solve the differential equation (A. I ) above, depends on the value of

m. We will consider three possible cases.

CASE 1. m=O

If m=O, then our second order differential equation becomes

= 0.

By the Fund~mental Theorem of Calculus, if R= 0, then x= a, and

x = at + b.

0
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Conversely, if x = at + b, then differentiating this equation

with respect to time we have
dx =a or x=a
dt

Differentiating again, we obtain

2d x=0.or :R=O
dt

2

Therefore, we conclude that x= at + b is the solution to the

differential equation x = 0

CASE 2. m<O

The differential equation R + m x = 0 can be rearranged as

R =- m x where -m is a positive number. Recall from calculus, that

the exponential function, when differentiated, yields a multiple of

itself. Thus, we want an exponential function which when

differentiated twice results in a positive multiple of itself. Let us

pause for a moment and consider two examples of exponential

functions.

X e 2 E and x=e-2t

Taking the first derivative of these two function with respect to

time, we obtain



880
i=2e2t and i=-2e-2t

After taking the second derivative, we have the following two

functions

R= 4e 2t and •=4e-2t.

If we substitute the values for R and x into the differential equation

R - 4x = 0, we see that x = e2t and x = e-2t are both solutions to the

same differential equation. Furthermore, any linear combination of
2t -2t

these two solutions such as x = cI e + c 2 e , is also a solution to

S+ m x = 0 w hen m =-4 . F rom this w e conclude that

x = c I e + c 2e , is a solution, for all c , and c 2 .

CASE 3. m)0

The differential equation R + mx = 0 can be rearranged as

= - rn x where -m is a negative number. Recall from calculus, that

the cosine function, when differentiated twice yields a negative

multiple of itself. This is also true for the sine function. Let us

pause for a moment and consider two examples involving the cosine

and sine functions.

x=cos2x and x=sin2x

0
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Taking the first derivative of these two function with respect to

time, we obtain

x=-2sin2x and i= 2cos2x.

After taking the second derivative, we have the following two

functions

R=-4cos2x and R=-4sin2x.

If we substitute the values for R and x into the differential equation

R + 4x= 0, we see that x= cos2 x and x= sin2x are both solutions to

the same differential equation. Furthermore, any linear combination

of these two solutions such as x= ccos2x+c )sin2x, is also a

solution to R + mx = 0 when m=4. From this we conclude that

x = cIcosVit + csin V'i t, is a solution, for all c1 and c2 .

Just as it was shown in Case 1, where m=O, every solution of R = 0

must be in the form at~b. It can also be shown that every solut-ion

for Cases 2 and 3, where m-0, must be in the forms we have

presented.
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Appendix B: Solutions to Exercises

The system 0 = u2 -=--D U can be

rewritten as the following two second order differential equations

- 3 ku

(B.I) -ku
fi2 M • 2 .

Similarly, the system X -LAX - 3a n X cx 2 =m" 1 -- A x 2an

be rewritten as the following two second order differential

equations

-2k +ik x

(B.2)

2  I m 2.

Each equation in (B. 1) can be solved independently using only basic

techniques from differential equations. However, since each

equation in (B.2) is in terms of both variables x1 and x 2 , neither

equation can be solved independently. Thus, it is much easier to



* 91

solve the system of differential equations given by

0 =•2 = m 0 1 u 2

We have already round the eigenvalues or A to be X1 =-3 and X2=- 1,

3k 1k
thus, r1I -- ' and r 2 =-m , which are both greater than zero. From

this we see that the two second order differential equations in u

and u 2 are

u 1 + uI =0 and Q +--u =0

These are both second order linear differential equations which can

be solved using basic techniques. Their solutions are

u i =C Ci! os (3-"t) + c 12sin (Fk•"t

u2= Cl os J t] + C2 sin (%/' t

The solution to the original systemn of differential equations
+ -4

X A X is round by substituting the values for both the matrix P
S• - -t -4Uand the vector U into the equation X =P U.



92 0

Multiplying the matrices on the right side together and equating

components, we get the following solutions to the differential

equation that models the spring-mass system.

Xl= CIIos( " t)c2i(• ) C2os m -t + c2sin(. t

x 2 =-C Cos (j t)-c 12 sin (. t)+c 2 1 cos MJi'•2 t+c2sin (2j t)

0

Since we have n variables x1 , x2 .... xn, we have n equations of

motion which are

d[r T] 1i [ST d F aT] 1____raTa
dt x t x. .t ax I J x

The ea.siest way to construct these equations is to find each

component. To find the left side of each of the equations of motion,

we first differentiate the equation for kinetic energy with respect to

*. (i=1, 2, ... ,n).
I 0
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aT M [2R +0+...+0]=m*9

aT I [0+2R2a*- 2 L 20+...+0]=m2

2

c T I[0+; X -:--- m [ ... + 0 + 2 R ] = R

When we differentiate each of these with respect to time, we have

d [ aT]•_
cit d*ct L ,IMR

• L-•2J [mxR21= MR

dt [ aR-n d L m

d [ aT 1 _ E m

The right side of each of the equations of motion is

0



S r x + 2b x + ...+ 2b x =-k b x +b x +...+b194

akx 1 - 2  I I 12 2 In n] 1 Ii 1 12 2 In Xn]

avI

-ax----k [2b,2x +2b 22x 2 +... +2b 2nXn]=-k[b12X+b 22x 2 + +b 2nXn]
2

aV- k2b +2b + +2 -k +bn 2bX +...+b nX
axn 2 Inx I 2n X2 +l2 nnX n InI 2nx " nnn

If we combine these componenis, the equations of motion become

=-L -b Ix - b - -b nXnmX I1 1 12 2 "'" n]

2 m 12xb 22x 2 ... b 2nXn]

n inX -b 2nX 2 -..- bnnX n].

The equations of motion can be rewritten in matrix form as

- 12 b

Vb2 1j2 222jm2 B

Xn -bIn -b2n -bnn Rn
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where B is an n x n symmetric matrix. Now we have an equation

that should look very familiar to us.
7ýk

X=t BX

Since B is a symmetric n x n matrix, there exists an orthogonal
-I

matrix P such that P BP=D. The matrix D is the diagonal matrix

whose entries along the main diagonal consist of the eigenvalues

.'.. .......n of B and the columns of P are the corresponding.

eigenvectors X X X X associated with the eigenvalues X C. n,

respectively. The following theory will be very similar to the

theory that we developed for the spring-mass system with two

blocks, except the sizes of the matrices and vectors will be n x n and
-1

n x 1, respectively. If we multiply both sides of this equation by P

-I
and use the identity P P - In, we get

- = -1 k k -I I-'l k (lplp-1i
P X=P -fBX= -X V B P P X=-X E-3P pP-1

To simplify this equation, we let U =P X. To introduce the vector

variable U, we substitute U = P X into this equation. We then
-l-4 p I-

substitute P BP = D and U =P X into the right side to obtain

U = •l U. Now, multiplying both sides of this matrix equation by
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-4 .k

the matrix P, we get P U -jj-P D U. Rewriting the left side of

kPU=j-'PD U gives

P (p(I) p (2) ... p(n) G2 p(I) ri+ (2) + (n)

Un

where P M represents the ith column (i - 1, 2 ... , n) of the matrix P.

We rewrite the right side to obtain

k k (_ (2) .. (n).

Thus, PU = -E"P D U can be written as

p()i + (2 G +. n L P(u+P (2) U +...+ P(n)
P 2 n MI 1l 2 2 nf fl]

k
We can simplify this equation by multiplying through by L,

gathering terms, moving everything to the left side, and factoring
(1) (2) (n)

out P), P P from each quantity.

m m =
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Since the columns of P are orthogonal, we know they are linearly
(1) (2) (n)

independent, thus, the coefficients of the vectors P .... P

must be zero. If we set each of the coefficients in the above

equation equal to zero, we have

Lk -=0, a .... i=n- -L;u -U o
S1 2 ml 2 2 n unOn-

These are all second order linear differential equations which can be

solved using basic techniques. If we let ri=-mk---. where i=, 21.

n, then these equations become

--ru 0, 0 +r u2=0, ~nn-
+rI uI 2 +2 2 =1+ru=0

--4

Using the following formulas, we can solve for the vector U. (Note:

To determine whether ri is zero, negative or positive, substitute Xi

into r.- - k- .. )

If r. 0, then u ci -tt + ci2

rt -r.t

If r. < 0, then u =c ile +c i2e

If r >0,thenu =cil Cos(J tJ+ci2 sin( t)
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The solution to the original system of differential equations

7ý k _+
X =-j- B X is found by substituting the values for both the matrix P

-4 
_+ -+

and the vector U into the equation X= P U.

Since the spring-mass system lies free in the xy-plane, the entire

system can move vertically up or down, horizontally to the left or

right, or rotate. These types of motion are called rigid motions. The

system can also vibrate producing the motions that are described by

Figures 2.6 and 2.7.

0 O
(a) Suppose the three masses are moved to the right causing the

first three springs to stretch by different amounts and causing the

fourth spring to be compressed. This is depicted in Figure BI.

m m m

H- xf-1 -x 3-1

Figure B. I

First, we need the equation which describes the kinetic energy of

the system in Figure B.I.
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T=- m 2+i2 2]
2m [ x2+ 3

The potential energy of the system is the sum of the potential

energies of each spring. Spring I is stretched from its equilibrium

position by the amount x , so the potential energy for spring I is

v =k x Spring 2 is stretched from its equilibrium posi.tion by

the amount x1 -x2 , so that V2- -k x -x2 is the potential energy

for spring 2. Spring 3 is stretched from its equilibrium position by

the amount x 2 -x 3 , producing a potential energy of

O2

V--L x(-x. for spring 3. Spring 4 is compressed from its3 2 k23/

equilibrium position by the amount x3 . Thus, the potential energy

I 2
for spring 4 is V4 -•kx 3" Therefore, the potential energy of the

system is

4 v [2 2= +2 +2V= Ev=k IX+ (x I- x2) + 2-x +3

-- 2 1l x + 3 l2- 2X 3)

2
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Since we have three variables x 1 , x2 , and x 3 , we have three

equations of motion which are

d ra ZT aV d r aT av and 'T] " aV
dt" -; axI dt [ a*2  ax 2  dt[ " ax3

The easiest way to construct these equations is to find each

component. To find the left side of each of the equations of motion,

we first differentiate the equation for kinetic energy with respect to
x.(i= 1,2,3).

aTII

aT = 1 [2+0+0]2mx

aT =m1 [0+02 2 +o.=m* 2

fm =2m3
2

aT I [ k :
7-' 7 m"[=+0" mj3m=m

3

Now, differentiating each of these with respect to time, we have
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d" T ='A[ R,]= MRex
dt Lj a 2] d[m 29 m

d,[ ai ] rLmq=mR
dt Lalxý31 dtL 3i

The right side of each of the equations of motion is

_ av -x ]=k[-2x +xax I 1-2x 2 , 21

_axv =-k[2x 2 _x -x 3 ]=k[x, -2x 2 +x 3 ]Sax 2 2 X X32 3

av =-k[2x x]=kx 2 -2x]
ax 3 X3-2 X

If we equate these components, th2 equations of motion become

R i=-[- -2x +x2]

R2= k-[ x l -2x2+x3

2 2 3
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The equations of motion can be rewritten in matrix form. which is

the system of differential equations modeling the spring-mass

system in Figure B.I.

-2 J2[ j0AXk 2 k -
: 2 : 1 -2 1:-E-A X

3) 0 1 -2 3)

(b) Since A is a symmetric matrix, all of its eigenvalues are real and

A is diagonalizable. We begin by finding the eigenvalues of the

matrix A.

{ -2-X 1 0
det(A - XI) = det - - X I (t + 2)(X + 2 - -V/2")() + 2 + v-v2)I

0 1 -2-

If we set det(A -XI) equal to zero and solve for X, we find the

eigenvalues are X-2, X2=-2÷f24 and X3 =-2-472. Thus, there exists

an invertible matrix P such that P- IAP = D. D is the diagonal matrix

whose entries along the main diagonal consist of the eigenvalues of

A and the columns of P are the corresponding eigenvectors. To find

P. we need to find the eigenvectors associated with X! C-2. X,=-2,-+{

and X3 =-2-N-2. For I =-2 we have to reduce the following

augmented matrix 0
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! -2+2 1 0
0 1 -2+2 0

1o0 0)
to obtain 0 1 0 I 0 [which yields the following equations: x(0 0 0I 0

3 and x2 =0. If we let x I-1, an eigenvector associated with X,7-

is X 0 1.

For X2 -- 2+'f2we have to reduce the following augmented matrix.

2 -2+10 0
1 -2--(-2+ l-2 I o)
0 2 -- (-2•+ )I o-

to obtain 0 -1 V/ 0 which yields the following equations:
(00 0 0,

X1 -X3 and x2 =4-'fx 3. If we let x 3 -1, an eigenvector associated with

Y1 =-2+ 2 iS X =

2
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For X2 =-2-{2we have to reduce the following augmented matrix.

2 - - (- 1 0 0
Io- 2 - (- 2 -2-(-2- ) 1o0

1~ 001(,o' _lo '
to obtain 0 2i -I 0 , which yields the following

equations: xI =x 3 and x 2 =-Nfx 3 . If we let x3 --I, an eigenvector

associated with X I =-2-'2 is X Using the theory

3

that we developed in Exercise 2.3. we know that we must first solve

the differential equation P U -=1-P D U. which leads to

X=•- D( _X U , wpi2) + ed (3)

[1-1  [03u3]P12 +[0 3

Since the columns of P are orthogonal, we know they are linearly

independent. Thus, the coefficients of the vectors P\s(( I), ), P\s((2),
(3)

) and P(, must be zero. If we set each of the coefficients in the

above equation equal to zero, we have

-L =0, a 0 u 0I- I m- M =0, 3- u 3 3
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Substituting in the eigenvalues, we obtain

ok-L (- 2) u=O, 0= -L-(-u2+V2)u2= 0Q- 2---(- 2-)u:0
I m 2 -m 2 '3 m30

After simplifying these equations they become

S+Lku1 = 0, a + (2- V2)k 2 =0. a3+ (2+Vr)kk =02k =0 J 2 -- u2 3 m u3

From these differential equations we observe that

0 2k (2 -( -2-) k (2 + VT')kr I== ' r2= m ' 3= m

Since each ri (i-1, 2, 3) is greater than zero, the solutions to these

second order linear differential equations are

U ClCos( ( t+' c 2sin2 k (F 2 n

u3 =c3 os (2-vf2) k t)J.in2( ( v2+ ) k t
2 21 COS U 0 --

U3 = 31 3O2- -
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The solution to the original system of differential equations

74 -4
X A X is found by substituting the values for both the matrix P

and the vector U into the equation X = P U.

4 -4U

'v4~~~~~~~ cv~ c2 cs 2.5kt+ 2sin (g(2~ k

Multiplying the matrices on the right side together and equating

components, we get the following solutions to the differential

equation which model the spring-mass system.

:- cos( t) (l2tCosin (g t)E)
+ Co 3U (O2m +.r2) k t)Csn ( .2

31 M32 U M t
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x2=V'c2 c /(2 -(%2-7 ) k tJ+V2c-sin(/2-v51

-/2c 3 1 cos( -V-2k t) -'/ c 3 2sin ( (2+vr2)k

x 3 =CllCos( (t)+C2 sin (Ji t)

+21 COS Q t 22S-

+ 31 OSm t+32 m t

(c) To describe the configurations in which the spring-mass system
vibrates, we need to write each ui in terms of the xi. This can be

done by using the matrix equation X = P U or U = P X. We first
-I

find P and substitute it into the matrix equation.

0
-22

u 2 2 rfI x

4 4 4 2
u 3 ., r I x 3

4 4 T4

Multiplying these matrices together and equating components, we

get the following three equations.

.. .... ... ...
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U11= 2

Xl + V" x2+ x 3
2= 4

X I vf- " x 2 + x 3

u3 4

These three equations describe the relationships between the.

variables

x1 , x 2 and x3 . The three modes in which this spring-mass system

-Xl+X3

vibrates are u 12 3 with u 2=0 and u 3 =0,

u= 2 3 with ul=O and u 3 =O, and

X --V'2X +X

I 2 3 with u1l= and u2 =O.

- X4 +X3 wt u2=O.

In the first mode, u 1 3 With =0 and u3 =0- Since

-I +X3 represents how the distance between blocks one and
2

three is changing, the first mode of vibration describes how the
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distance between the two blocks is changing. We visualize this by

considering a series of diagrams similar to those in Figure 2.6.

Recall, the banner is made of an elastic material and indicates the

distance between the two blocks. When this system vibrates, we

see the banner contracting and stretching with a frequency

associated with X I. This is indicated by the series of "snapshots" of

the spring-mass system in motion seen in Figure B.2.

-- -

MM V/

Figure B.2
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X+"•fl'X +X

In the second mode, u2= 2 3'2 4wih=On

u 3 --0. To visualize this mode of vibration, we consider a series of

diagrams similar to those in Figure 2.6. When this system vibrates,

we see the flag moving back and forth with a frequency associated

with X 2 " This is indicated by the series of "snapshots" of the spring-

mass system in motion as seen in Figure B.3.

Figure B.3



In the third mode, u 3 = 2 + with u 0 and u2 =O-

To visualize this mode of vibration, we consider a series of diagrams

similar to those in Figure 2.6. When this system vibrates, we see

the flag moving back and forth with a frequency associated with X3.

This is indicated by the series of "snapshots" of the spring-mass

system in motion, as seen in Figure B.4.

F

Figure B.4
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Since the spring-mass system lies in the xy-plane, the entire system

can move vertically up or down, horizontally to the left or right, or

rotate. Besides these rigid motions, the system can also vibrate

producing the motion that were described in Exercise 2.6.

We write f (L) as a Taylor series expansion expanded about zero.

We use f (1), which has been repeated below for convenience, to

find f(O), NO() and f"(O).

f (I(x 2 2)1

L(){I + ±L((x I-X 2) -%f3 Y1 Jy + 2{( x J~2  +(y,..y2)2J

f(O) = 1

(10) 2o _x ( ,_I

•,0•~~~~~~ 1_- 2x_•_•_,)•(, x'%13,-•)
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Substituting these into the Taylor series expansion and simplifying,

we have

L1! L-

+-IE(xl-X2-(YI-Y 2)] +( x-X2) (YI-Y2) ,2!

+ Y hge oe terms.

Figure B.5 contains the coordinates of the blocks and the distance

formula for the spring from Figure 3.3.

V2 (X 3L3 L + 2

x 2

1 wheed x- ( -. L2+ X3 )] 2[ .L+V 2 ) V3 ]

Sx 3

* Figure B.5
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The potential energy of this spring is one half the spring constant k

times the square of the distance that the spring is stretched. The

displacement of the spring from its equilibrium position (the

distance that the spring is stretched) is jd-Lj. Expressing the

potential energy of the spring in terms of Id-LI, we have

V23= -k Id-L12

We want to rewrite V2 3 using the variables x 2 , Y2 , x3 and Y3. To

do this, we must first simplify the expression for the distance d.
I

2

d= X + x 2+ [ L~ L+ y 2) - 21

{ L 2 2  )]2} 2 3

2 2

L L+±( 2 - X3) +v'T(/3 3 )]+ -L2[(x 2 x3 ) + (y 2 y 3 )2 ]

We can rewrite the quantity expressed by the square root using its

Taylor series expansion. The terms of higher powers have been

grouped together for convenience. 0
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d!= L 11+ " 2x 1 ! L" +terms of higher powers

This expression can be simplified by multiplying through by L and

then moving the L to the left side. The resulting quantity is what

we wanted to find.

d-L•- 2  2  terms of higher powers

This quantity can now be substituted into the formula for the

potential energy V-2 3.

V23 = -Lk Id-L12

{ -LI[(x 2 -x 3 J+\"/(y 2 y 3 )] 2 +termsofhigherpowers}

The Taylor series expansion for potential energy can not have

nonzero linear terms, since the system has an equilibrium

configuration. Also, we are considering only small vibrations-so we

ignore the terms of higher powers. The formula for potential

energy V2 3 , is
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2-k- x2 J - 2 4x 3 + 2x 2 Y Y23

=2" -4+ +-'4 4 2 2x 22 2- 2 32

x2Y3+ VTx3 3- 2Y3

Figure B.6 contains the coordinates or the blocks and the distance

formula for the spring from Figure 3.4.

Y3 (-4121X 3 -Y3) Y, 1"+Xl,
X3 X1

where d= [( +x)+x)+Ir 3

Figure B.6

The potential energy of this spring is one half the spring constant k,

times the square of the distance that the spring is stretched. The

displacement of the spring from its equilibrium position (the

distance that the spring is stretched) is Id-LI. Expressing the

potential energy of the spring in terms of Id-LI. we have
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V 13=J-kld-L1I'V13- 2-

We want to rewrite V 13 using the variables x 1 , YI, x3 and Y3. To

do this we must first simplify the expression for the distance d.

2

2 2•

=L12 ( I- 3)+-JL[(XI 3)) 2 }21-

We can rewrite the quantity expressed by the square root using its

Taylor series expansion. The terms of higher powers have bee.n

"grouped together for convenience.

d=L{ 1+[ (-x3)] I +higherpower terms 1
1IT L
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This expression can be simplified by multiplying through by L and

then moving the L to the left side. The resulting quantity is what

we wanted to find.

d-L = (x - x3)+ higher power terms

This quantity can now be substituted into the formula for the

potential energy V

V =-'kid-L 12

13 2

={xI -x 3 + higher power terms

The Taylor series expansion for potential energy can not have any

nonzero linear terms, since the system has an equilibrium

configuration. Also, we are considering only small vibrations so we

ignore the terms of higher powers. The formula for potential

energy V 13' is

-' 2 +X2X3 - 2x)X

-k{ x 2 1 3 }
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Substituting X.== into V(x J=o x 8 AX =0,X 0 0 "j x J= mX=

0

0

gives

1 I
-k 1

v 1 =(I 1 0 00) --km A
0 8m 0
0 0
0 0

-5 1 4 VT3 --V3 0
1 -2 1 -V3 0 Vf

-k I I 1 o o) 4 1 -5 0 -Nf --V%8m V/f -V 0 -3 3 0 0

-VT3 0 VT 3 -6 3 0
0 V3-v-T 0 3 -3 0

I

:k(O0 0 0 00) 1 =:08m 0

0

0

0
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0
0•.0 0 •T -kAX ,

Substituting X into V =x x - AX 0,X 0 I ). j=o =0 rn •=0
2 j

.I•

gives

O 
(0

0 0
V 0 =(o 0011 mk A 0

1~ 8 m

-5 1 4 V-/ -VT 0 0
1 -2 i --Vf3 0 Vf 0

0 0 4 1 -5 0 VT -V1 08( 001) -V-\/ 0 -3 3 0 1

-VT3 0 VT 3 -6 3 1
0 VTr3" --VT3 0 .. 3 -3

0

0

-k 0 0 0) 0 =
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2VT
-4-V3"ito

Substituting X •.3=0= -3

0
3

V xJ=0T - A X = 0, gives
j J j

-V3 -VT
2\2VT 2V3
'V"\ -(--V, 2V3, -- V3, -3, 0, 3) -s--- A V/-3 8m -3

o 0
3 j 3

-5 1 4 VT3 -VT o
1 -2 i -V-.3 0 VT

=.(-Vr3Q2.~-,f, ,/,-3,0,3) 1~ - VT -V
VT f3 -VT3" 0 -3 3 0

-V• 0 VT 3 -6 3

0 "VT -VT 0 3 -3

0



122

2VT

k 0 0 0 0 0 0) - = :0
8 m -3

0
3

•-4 -4 -.-

Now, show that X is orthogonal to both X and X I

x x 3=:0 0 I X20 -

00 0
3 I 2

0 0

30

2V-3 .-X "3 0 =

X 3= 0 • 2=0 -3

0 1
3 1

1
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To show that X and X are orthogonal, we show their dotx. =-6 2.=-6I 2x

product is zero.

I

0 2

xX =-6X x 6 =0
-2 1

1 0

0

¶


